题目内容

12.已知函数f(x)=$\frac{2x+3}{3x}$,数列{an}满足a1=1,an+1=f($\frac{1}{{a}_{n}}$),n∈N*
(1)求数列{an}的通项公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求Tn
(3)令bn=$\frac{1}{{a}_{n-1}{a}_{n}}$ (n≥2),b1=3,Sn=b1+b2+…+bn,求Sn

分析 (1)由题意可得{an}是以$\frac{2}{3}$为公差的等差数列.运用等差数列的通项公式,即可得到;
(2)将Tn化为a2(a1-a3)+a4(a3-a5)+…+a2n(a2n-1-a2n+1),运用等差数列的通项公式,以及求和公式,化简即可得到所求;
(3)化简bn=$\frac{9}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),再由裂项相消求和公式,化简即可得到.

解答 解 (1)∵an+1=f($\frac{1}{{a}_{n}}$)=$\frac{2+3an}{3}$=an+$\frac{2}{3}$,
∴{an}是以$\frac{2}{3}$为公差的等差数列.
又a1=1,∴an=$\frac{2}{3}$n+$\frac{1}{3}$;
(2)Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1
=a2(a1-a3)+a4(a3-a5)+…+a2n(a2n-1-a2n+1
=-$\frac{4}{3}$(a2+a4+…+a2n)=-$\frac{4}{3}$•[$\frac{5}{3}$n+$\frac{2}{3}$n(n-1)]
=-$\frac{4}{9}$(2n2+3n);
(3)当n≥2时,bn=$\frac{1}{{a}_{n-1}{a}_{n}}$=$\frac{1}{(\frac{2}{3}n-\frac{1}{3})(\frac{2}{3}n+\frac{1}{3})}$
=$\frac{9}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
又b1=3=$\frac{9}{2}$(1-$\frac{1}{3}$),
∴Sn=b1+b2+…+bn
=$\frac{9}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{9}{2}$(1-$\frac{1}{2n+1}$)=$\frac{9n}{2n+1}$.

点评 本题考查等差数列的通项公式和求和公式的运用,考查数列的求和方法:裂项相消求和,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网