题目内容
【题目】下表是某公司年月份研发费用(百万元)和产品销量 (万台)的具体数据:
月 份 | ||||||||
研发费用(百万元) | ||||||||
产品销量(万台) |
(1)根据数据可知与之间存在线性相关关系,用线性相关系数说明与之间的相关性强弱程度
(2)求出与的线性回归方程(系数精确到),并估计当研发费用为(百万元)时该产品的销量.
参考数据:,,,
参照公式:相关系数,其回归直线中的
【答案】(1)与之间的具有强相关关系;(2)万台.
【解析】
(1)估计相关系数,先求得,,再结合提供的数据代入公式求解.
(2)根据(1)的数据,求得,得到,写出回归方程,再将代入回归方程求解.
(1)因为,
,
所以,
所以与之间的具有强相关关系;
(2)因为,
所以,
所以,当时,,
所以当研发费用为(百万元)时,该产品的销量约为万台.
【题目】2019年,中国的国内生产总值(GDP)已经达到100亿元人民币,位居世界第二,这其中实体经济的贡献功不可没,实体经济组织一般按照市场化原则运行,某生产企业一种产品的成本由原料成本及非原料成本组成,每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:
根据以上数据绘制了如下的散点图
现考虑用反比例函数模型和指数函数模型分别对两个变量关系进行拟合,为此变换如下:令,则,即与也满足线性关系,令,则,即也满足线线关系,这样就可以使用最小二乘法求得非线性回归方程,已求得用指数函数模型拟合的回归方程为与的相关系数,其他参考数据如下(其中)
(1)求指数函数模型和反比例函数模型中关于的回归方程;
(2)试计算与的相关系数,并用相关系数判断:选择反比例函数和指数函数两个模型中哪一个拟合效果更好(精确到0.01)?
(3)根据(2)小题的选择结果,该企业采用订单生产模式(即根据订单数量进行生产,产品全部售出),根据市场调研数据,该产品定价为100元时得到签到订单的情况如下表:
订单数(千件) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
概率 |
已知每件产品的原来成本为10元,试估算企业的利润是多少?(精确到1千元)
参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别是:相关系数: