题目内容

(本小题满分12分)(

某种项目的高*考#资^源*网射击比赛,开始时在距目标100m处射击,如果命中记6分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已经在150m处,这时命中记3分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已经在200m处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分,且不再继续射击.已知射手甲在100m处击中目标的高*考#资^源*网概率为,他的高*考#资^源*网命中率与其距目标距离的高*考#资^源*网平方成反比,且各次射击是否击中目标是相互独立的高*考#资^源*网.

(Ⅰ)分别求这名射手在150m处、200m处的高*考#资^源*网命中率;

(Ⅱ)设这名射手在比赛中得分数为ξ,求随机变量ξ的高*考#资^源*网分布列和数学期望.

解:⑴由题意,这名选手距目标处的高*考#资^源*网命中率

,………………2分

即这名射手在处、处的高*考#资^源*网命中率分别为。   ……………5分

⑵由题意,……………6分

处命中目标分别为事件

由⑴知

,……………7分

,……………8分

,……………9分

所以随机变量的高*考#资^源*网分布列为

10分

           ……………12分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网