题目内容

16、已知函数f(x)=ax+x2-xlna(a>0,a≠1).
(Ⅰ)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
(Ⅱ)若函数y=|f(x)-t|-1有三个零点,求t的值.
分析:(Ⅰ)先求原函数的导数得:f'(x)=axlna+2x-lna=2x+(ax-1)lna,由于a>1,得到f'(x)>0,从而函数f(x)在(0,+∞)上单调递增.
(Ⅱ)由已知条件得,当a>0,a≠1时,f'(x)=0有唯一解x=0,又函数y=|f(x)-t|-1有三个零点,等价于方程f(x)=t±1有三个根,从而t-1=(f(x))min=f(0)=1,解得t即得.
解答:解:(Ⅰ)f'(x)=axlna+2x-lna=2x+(ax-1)lna
由于a>1,故当x∈(0,+∞)时,lna>0,ax-1>0,所以f'(x)>0,
故函数f(x)在(0,+∞)上单调递增(4分)
(Ⅱ)当a>0,a≠1时,因为f'(0)=0,且f'(x)在R上单调递增,
故f'(x)=0有唯一解x=0(6分)
所以x,f'(x),f(x)的变化情况如表所示:

又函数y=|f(x)-t|-1有三个零点,所以方程f(x)=t±1有三个根,
而t+1>t-1,所以t-1=(f(x))min=f(0)=1,解得t=2(10分).
点评:本小题主要考查函数单调性的应用、利用导数研究函数的单调性、函数的零点等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网