题目内容

【选做题】在A、B、C、D四小题中只能选做两题,每小题l0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.

A.选修4 – 1几何证明选讲

如图,△ABC的外接圆的切线AEBC的延长线相交于点E,

BAC的平分线与BC交于点D.

求证:ED2= EB·EC.

【选做题】在A、B、C、D四小题中只能选做两题,每小题l0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.

A.选修4 – 1几何证明选讲

证明: 因为EA是圆的切线,AC为过切点A的弦,所以

ÐCAE = ÐCBA.

又因为AD是ÐBAC的平分线,所以ÐBAD = ÐCAD

所以ÐDAE = ÐDAC + ÐEAC = ÐBAD + ÐCBA = ÐADE

所以,△EAD是等腰三角形,所以EA = ED. ……………………………………………………6分

EA2 = EC·EB,

所以ED2 = EB·EC. ……………………………………………………………………………4分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网