题目内容

已知椭圆
x2
4
+
y2
2
=1
,A、B是其左右顶点,动点M满足MB⊥AB,连接AM交椭圆与点P,在x轴上有异于点A、B的定点Q,以MP为直径的圆经过直线BP、MQ的交点,则点Q的坐标为
 
分析:设M(2,2),MA的方程为:x-2y+2=0,MQ的方程为x-y=0,Q是直线MQ与x轴的交点,故Q的坐标为(0,0).
解答:解:设M(2,2),
∵A(-2,0),B(2,0),
∴MA的方程为:x-2y+2=0,
x-2y+2=0
2x2+4y2=8

解得P(
2
3
4
3
),
从而得到直线PB的斜率kPB=-1,
由直径上的圆周角是直角知PB⊥MQ,
∴kMQ=1,
于是直线MQ的方程为x-y=0,
∵Q是直线MQ与x轴的交点,
故Q的坐标为(0,0).
故答案为:(0,0).
点评:本题考查圆和性质和综合运用,解题时要注意特殊殖法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网