题目内容

设函数f(x)=x2-2tx+2,其中t∈R.
(1)若t=1,求函数f(x)在区间[0,4]上的取值范围;
(2)若t=1,且对任意的x∈[a,a+2],都有f(x)≤5,求实数a的取值范围.
(3)若对任意的x1,x2∈[0,4],都有|f(x1)-f(x2)|≤8,求t的取值范围.
分析:(1)若t=1,则f(x)=(x-1)2+1,根据二次函数在[0,4]上的单调性可求函数的值域
(2)由题意可得函数在区间[a,a+2]上,[f(x)]max≤5,分别讨论对称轴x=t与区间[a,a+2]的位置关系,进而判断函数在该区间上的单调性,可求最大值,进而可求a的范围
(3)设函数f(x)在区间[0,4]上的最大值为M,最小值为m,对任意的x1,x2∈[0,4],都有|f(x1)-f(x2)|≤8等价于M-m≤8,结合二次函数的性质可求
解答:解:因为f(x)=x2-2tx+2=(x-t)2+2-t2
所以f(x)在区间(-∞,t]上单调减,在区间[t,∞)上单调增,且对任意的x∈R,都有f(t+x)=f(t-x),
(1)若t=1,则f(x)=(x-1)2+1.
①当x∈[0,1]时.f(x)单调减,从而最大值f(0)=2,最小值f(1)=1.
所以f(x)的取值范围为[1,2];
②当x∈[1,4]时.f(x)单调增,从而最大值f(4)=10,最小值f(1)=1.
所以f(x)的取值范围为[1,10];
所以f(x)在区间[0,4]上的取值范围为[1,10].                     …(3分)
(2)“对任意的x∈[a,a+2],都有f(x)≤5”等价于“在区间[a,a+2]上,[f(x)]max≤5”.
①若t=1,则f(x)=(x-1)2+1,
所以f(x)在区间(-∞,1]上单调减,在区间[1,∞)上单调增.
②当1≤a+1,即a≥0时,
由[f(x)]max=f(a+2)=(a+1)2+1≤5,得-3≤a≤1,
从而 0≤a≤1.
③当1>a+1,即a<0时,由[f(x)]max=f(a)=(a-1)2+1≤5,得-1≤a≤3,
从而-1≤a<0.
综上,a的取值范围为区间[-1,1].                             …(6分)
(3)设函数f(x)在区间[0,4]上的最大值为M,最小值为m,
所以“对任意的x1,x2∈[0,4],都有|f(x1)-f(x2)|≤8”等价于“M-m≤8”.
①当t≤0时,M=f(4)=18-8t,m=f(0)=2.
由M-m=18-8t-2=16-8t≤8,得t≥1.
从而 t∈∅.
②当0<t≤2时,M=f(4)=18-8t,m=f(t)=2-t2
由M-m=18-8t-(2-t2)=t2-8t+16=(t-4)2≤8,得
4-2
2
≤t≤4+2
2

从而  4-2
2
≤t≤2.
③当2<t≤4时,M=f(0)=2,m=f(t)=2-t2
由M-m=2-(2-t2)=t2≤8,得-2
2
≤t≤2
2

从而 2<t≤2
2

④当t>4时,M=f(0)=2,m=f(4)=18-8t.
由M-m=2-(18-8t)=8t-16≤8,得t≤3.
从而 t∈∅.
综上,t的取值范围为区间[4-2
2
,2
2
].                      …(10分)
点评:本题主要考查了二次函数闭区间上的最值的求解,解题的关键是确定二次函数的对称轴与所给区间的位置关系,体现了分类讨论思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网