题目内容

已知椭圆
x2
α 2
+
y 2
α2-1
=1(a>1)
的左右焦点为F1,F2,抛物线C:y2=2px以F2为焦点且与椭圆相交于点M,直线F1M与抛物线C相切.
(Ⅰ)求抛物线C的方程和点M的坐标;
(Ⅱ)过F2作抛物线C的两条互相垂直的弦AB、DE,设弦AB、DE的中点分别为F、N,求证直线FN恒过定点.
分析:(Ⅰ)由椭圆方程得半焦距c=
a2-(a2-1)
=1
,椭圆焦点为F1(-1,0),F2(1,0),抛物线C的焦点为(
p
2
,0)
,故
p
2
=1,p=2
,由此能求出抛物线C的方程和点M的坐标.
(Ⅱ)设AB的方程为x=ty+1,代入y2=4x,得y2-4ty-4=0,设A(x1,y1),B(x2,y2),由韦达定理和两点式方程能导出直线FN恒过定点(3,0).
解答:解:(Ⅰ)由椭圆方程得半焦距c=
a2-(a2-1)
=1
,(1分)
所以椭圆焦点为F1(-1,0),F2(1,0),(2分)
又抛物线C的焦点为(
p
2
,0)
,∴
p
2
=1,p=2
,∴C:y2=4x,(3分)
设M(x1,y1),则y12=4x1,直线F1M的方程为y=
y1
x1+1
(x+1)
,(4分)
代入抛物线C得y12(x+1)2=4x(x1+1)2,即4x1(x+1)2=4x(x1+1)2
∴x1x2-(x12+1)x+x1=0,∴F1M与抛物线C相切,
∴△=(x12+1)2-4x12=0,∴x1=1,M(1,±2),(7分)
(Ⅱ)设AB的方程为x=ty+1,代入y2=4x,得y2-4ty-4=0,(8分)
设A(x1,y1),B(x2,y2),则y1+y2=4t,
y1+y2
2
=2t
,(9分)
x1+x2=t(y1+y2)+2=4t2+2,
x1+x2
2
=2t2+1
,(10分)
所以F(2t2+1,2t),将t换成-
1
t
得N(
2
t2
+1,-
2
t
),(12分)
由两点式得FN的方程为x-(t-
1
t
) y=3
,(13分)
当y=0时x=3,所以直线FN恒过定点(3,0).(13分)
点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,注意抛物线性质的灵活运用和韦达定理的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网