题目内容

已知f(x)是二次函数,f'(x)是它的导函数,且对任意的x∈R,f'(x)=f(x+1)+x2恒成立,求f(x)的解析表达式.
分析:设f(x)=ax2+bx+c(其中a≠0),求导可得f'(x)=2ax+b,代入f'(x)=f(x+1)+x2恒成立可得a,b,c之间的关系,可求
解答:解:设f(x)=ax2+bx+c(其中a≠0),
则f'(x)=2ax+b,
∵f(x+1)=a(x+1)2+b(x+1)+c=ax2+(2a+b)x+a+b+c.
由已知,得2ax+b=(a+1)x2+(2a+b)x+a+b+c,
a+1=0
2a+b=2a
a+b+c=b
,解之,得a=-1,b=0,c=1,
∴f(x)=-x2+1.
点评:本题主要考查了利用待定系数法求解二次函数的解析式,函数导数的求解,属于基础试题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网