题目内容

把正整数按上小下大、左小右大的原则排成如图所示的数表:
设(i、j∈N*)是位于这个数表中从上往下数第i行、从左往右数第j个数,数表中第i行共有2i-1个正整数.
(1)若aij=2013,求i、j的值;
(2)记An=a11+a22+a33+…+ann(n∈N*),试比较An与n2+n的大小,并说明理由.

【答案】分析:(1)根据图形结构判断前n行共有多少项,从而判断2013在第几行,第几个数,求得i、j即可;
(2)先求出An,利用归纳,猜想、证明的方法比较An与n2+n的大小.
解答:解:(1)数表中前n行共有1+2+22+23+…+2n-1=2n-1个数,
第i行第一个数是2i-1
∴aij=2i-1+j-1,
∵210<2013<211
∴i=11,j=2013-210+1=990.
(2)∵An=a11+a22+a33+…+ann=(1+2+22+…+2n-1)+[0+1+2+3+…+(n-1)]=2n-1+
∴An-(n2+n)=2n-
当n=1时,,则An<n2+n;
当n=2时,,则An<n2+n;
当n=3时,,则An<n2+n;
当n=4时,2n,则An<n2+n;
猜想:当n≥4时,2n
用数学归纳法证明如下:
①当n=4时,24=16>,成立;
②假设当n=k(k≥4)时,成立,
当n=k+1时,2k+1=2×2k>k23k+2,
∵k23k+2-==>0,(k≥4)
∴2k+1,即n=k+1时,成立.
由①②知,n≥4时,2n,即An>n2+n.
综上,当n=1、2、3时,An<n2+n;
当n≥4时,An>n2+n.
点评:本题考查了数学归纳法及等差、等比数列的综合问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网