题目内容

(2009•卢湾区二模)设数列{an}的前n项之和为Sn,若Sn=
1
12
(an+3)2
(n∈N*),则{an}(  )
分析:a1=S1=
1
12
(a1+3)  2
,a1=3.当n≥2时,an=Sn-Sn-1=
1
12
(an+3)2-
1
12
(an-1+3)2
,所以12an=(an2+6an+9)-(an-1+3)2,整理得(an-3)2-(an-1+3)2=0,解得an+an-1=0,或an-an-1-6=0,当an+an-1=0时,
an
an-1
=-1
,数列{an}是以a1=3,公比为-1的等比数列.当an-an-1-6=0时,an-an-1=6,数列{an}是以a1=3,公差为6的等差数列.
解答:解:a1=S1=
1
12
(a1+3)  2

∴a1=3.
当n≥2时,an=Sn-Sn-1=
1
12
(an+3)2-
1
12
(an-1+3)2

∴12an=(an2+6an+9)-(an-1+3)2
∴(an-3)2-(an-1+3)2=0,
∴[(an-3)+(an-1+3)][(an-3)-(an-1+3)]=0,
∴an+an-1=0,或an-an-1-6=0,
当an+an-1=0时,
an
an-1
=-1
,数列{an}是以a1=3,公比为-1的等比数列.
当an-an-1-6=0时,an-an-1=6,数列{an}是以a1=3,公差为6的等差数列.
故选D.
点评:本题考查数列的综合应用,解题时要认真审题,注意挖掘题设中的隐含条件,灵活运用数列递推式,合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网