题目内容
(2012•广州一模)两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作a1=1,第2个五角形数记作a2=5,第3个五角形数记作a3=12,第4个五角形数记作a4=22,…,若按此规律继续下去,则a5=
35
35
,若an=145,则n=10
10
.分析:仔细观察法各个图形中实心点的个数,找到个数之间的通项公式,再求第5个五角星的中实心点的个数及an=145时,n的值即可.
解答:解:第一个有1个实心点,
第二个有1+1×3+1=5个实心点,
第三个有1+1×3+1+2×3+1=12个实心点,
第四个有1+1×3+1+2×3+1+3×3+1=22个实心点,
…
第n个有1+1×3+1+2×3+1+3×3+1+…+3(n-1)+1=
+n个实心点,
故当n=5时,
+n=
+5=35个实心点.
若an=145,即
+n=145,解得n=10
故答案为:35,10.
第二个有1+1×3+1=5个实心点,
第三个有1+1×3+1+2×3+1=12个实心点,
第四个有1+1×3+1+2×3+1+3×3+1=22个实心点,
…
第n个有1+1×3+1+2×3+1+3×3+1+…+3(n-1)+1=
3n(n-1) |
2 |
故当n=5时,
3n(n-1) |
2 |
3×5×4 |
2 |
若an=145,即
3n(n-1) |
2 |
故答案为:35,10.
点评:本题考查了图形的变化类问题,解题的关键是仔细观察每个图形并从中找到通项公式.
练习册系列答案
相关题目