题目内容

已知函数y=2sin,
(1)求它的振幅、周期、初相;
(2)用“五点法”作出它在一个周期内的图象;
(3)说明y=2sin的图象可由y=sinx的图象经过怎样的变换而得到.
(1)振幅A=2,周期T==,初相=.(2)图象见解析(3)把y=sinx的图象上所有的点向左平移个单位,得到y=sin的图象,再把y=sin的图象上的点的横坐标缩短到原来的倍(纵坐标不变),得到y=sin的图象,最后把y=sin上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y=2sin的图象.
(1)y=2sin的振幅A=2,周期T==,初相=.


(2)令X=2x+,则y=2sin=2sinX.
列表,并描点画出图象:
(3)方法一 把y=sinx的图象上所有的点向左平移个单位,得到y=sin的图象,再把y=sin的图象上的点的横坐标缩短到原来的倍(纵坐标不变),得到y=sin的图象,最后把y=sin上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y=2sin的图象.
方法二 将y=sinx的图象上每一点的横坐标x缩短为原来的倍,纵坐标不变,得到y=sin2x的图象;
再将y=sin2x的图象向左平移个单位;
得到y=sin2=sin的图象;再将y=sin的图象上每一点的横坐标保持不变,纵坐标伸长为原来的2倍,得到y=2sin的图象.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网