题目内容
已知
是
的三个内角,且满足
,设
的最大值为
.
(Ⅰ)求
的大小;
(Ⅱ)当
时,求
的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212138970512.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212138985517.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139001796.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139016309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139032362.png)
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139032362.png)
(Ⅱ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139250599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139282578.png)
(1)
;(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139297578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139328766.png)
本试题主要是考查了解三角形的运用。利用正弦定理和余弦定理求解三角形,以及三角恒等变换的综合运用。
解:(Ⅰ)由题设及正弦定理知,
,即
.
由余弦定理知,
············ 2分
.··················· 4分
因为
在
上单调递减,所以
的最大值为
.········· 6分
(Ⅱ)解:设
,························ ①
······································ 8分
由(Ⅰ)及题设知
.····················· ②
由①2+②2得,
.··················· 10分
又因为
,
所以
,即
.··················· 12分
解:(Ⅰ)由题设及正弦定理知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139438531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139453590.png)
由余弦定理知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232121394691611.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232121394841243.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139500517.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139516488.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139016309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139297578.png)
(Ⅱ)解:设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139609636.png)
······································ 8分
由(Ⅰ)及题设知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139625716.png)
由①2+②2得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139640928.png)
又因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139656834.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139672490.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212139328766.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目