题目内容

(本小题满分12分) 某居民小区有两个相互独立的安全防范系统(简称系统),系统在任意时刻发生故障的概率分别为

(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为,求的值;

(Ⅱ)设系统在3次相互独立的检测中不发生故障的次数为随机变量,求的概率分布列及数学期望

 

【答案】

(1);(2)E=0  .

【解析】(1)设:“至少有一个系统不发生故障”为事件C,那么

1-P(C)=1-P=  ,解得P=………………………………4 分 

(2)由题意,P(=0)=[来源:Z+xx+k.Com]

P(=1)=

P(=2)=

P(=3)=

所以,随机变量的概率分布列为:

0

1

2

3

  

   P

 

故随机变量X的数学期望为: E=0  ……………………12分.

[点评]本小题主要考查相互独立事件,独立重复试验、互斥事件、随机变量的分布列、数学期望等概念及相关计算,考查运用概率知识与方法解决实际问题的能力.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网