题目内容
【题目】十七世纪法国数学家费马提出猜想:“当整数时,关于的方程没有正整数解”.经历三百多年,于二十世纪九十年中期由英国数学家安德鲁怀尔斯证明了费马猜想,使它终成费马大定理,则下面说法正确的是( )
A. 存在至少一组正整数组使方程有解
B. 关于的方程有正有理数解
C. 关于的方程没有正有理数解
D. 当整数时,关于的方程没有正实数解
【答案】C
【解析】
由于B,C两个命题是对立的,故正确选项是这两个选项中的一个.利用反证法,先假设有正有理数解,然后推出跟题目所给费马大定理矛盾,由此得出方程没有正有理数解.
由于B,C两个命题是对立的,故正确选项是这两个选项中的一个.假设关于的方程有正有理数解,故可写成整数比值的形式,不妨设,其中为互质的正整数,为互质的正整数.代入方程得,两边乘以得,由于都是正整数,这与费马大定理矛盾,故假设不成立,所以关于的方程没有正有理数解.故选C.
练习册系列答案
相关题目
【题目】某校学生会为了解高二年级600名学生课余时间参加中华传统文化活动的情况(每名学生最多参加7场).随机抽取50名学生进行调查,将数据分组整理后,列表如下:
参加场数 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
占调查人数的百分比 | 8% | 10% | 20% | 26% | 18% | m% | 4% | 2% |
则以下四个结论中正确的是( )
A.表中m的数值为10
B.估计该年级参加中华传统文化活动场数不高于2场的学生约为108人
C.估计该年级参加中华传统文化活动场数不低于4场的学生约为216人
D.若采用系统抽样方法进行调查,从该校高二600名学生中抽取容量为30的样本,则分段间隔为15