题目内容

【题目】十七世纪法国数学家费马提出猜想:“当整数时,关于的方程没有正整数解”.经历三百多年,于二十世纪九十年中期由英国数学家安德鲁怀尔斯证明了费马猜想,使它终成费马大定理,则下面说法正确的是( )

A. 存在至少一组正整数组使方程有解

B. 关于的方程有正有理数解

C. 关于的方程没有正有理数解

D. 当整数时,关于的方程没有正实数解

【答案】C

【解析】

由于B,C两个命题是对立的,故正确选项是这两个选项中的一个.利用反证法,先假设有正有理数解,然后推出跟题目所给费马大定理矛盾,由此得出方程没有正有理数解.

由于B,C两个命题是对立的,故正确选项是这两个选项中的一个.假设关于的方程有正有理数解,故可写成整数比值的形式,不妨设,其中为互质的正整数,为互质的正整数.代入方程得,两边乘以,由于都是正整数,这与费马大定理矛盾,故假设不成立,所以关于的方程没有正有理数解.故选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网