ÌâÄ¿ÄÚÈÝ
3£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªOΪ×ø±êԵ㣬µãAµÄ×ø±êΪ£¨a£¬b£©£¬µãBµÄ×ø±êΪ£¨cos¦Øx£¬sin¦Øx£©£¬ÆäÖЦأ¾0£®Éèf£¨x£©=$\overrightarrow{OA}•\overrightarrow{OB}$£®£¨¢ñ£©¼Çº¯Êýy=f£¨x£©µÄÕýµÄÁãµã´ÓСµ½´ó¹¹³ÉÊýÁÐ{an}£¨n¡ÊN*£©£¬µ±a=$\sqrt{3}$£¬b=1£¬¦Ø=2ʱ£¬Çó{an}µÄͨÏʽÓëÇ°nÏîºÍSn£»
£¨¢ò£©¼Çº¯Êýg£¨x£©=2x£¬ÇÒg£¨b£©=g£¨a£©•g£¨-2£©£®µ±x¡ÊRʱ£¬Éèf£¨x£©µÄÖµÓòΪM£¬²»µÈʽx2+mx£¼0µÄ½â¼¯ÎªN£¬ÈôN⊆M£¬ÇóʵÊýmµÄ×î´óÖµ£»
£¨¢ó£©Áî¦Ø=1£¬a=t2£¬b=£¨1-t£©2£¬Èô²»µÈʽf£¨¦È£©-$\sqrt{ab}$£¾0¶ÔÈÎÒâµÄt¡Ê[0£¬1]ºã³ÉÁ¢£¬Çó¦ÈµÄÈ¡Öµ·¶Î§£®
·ÖÎö £¨¢ñ£©ÓÉÒÑÖªÀûÓÃÊýÁ¿»ýµÄ×ø±êÔËËãµÃµ½f£¨x£©µÄ½âÎöʽ²¢½øÐл¯¼ò£¬µÃµ½º¯Êýy=f£¨x£©µÄÕýµÄÁãµãÓÃk±íʾ£¬ÓÉÌâÒâµÃµ½ÊýÁÐ{an}£¨n¡ÊN*£©µÄÊ×ÏîºÍ¹«²î£¬È»ºóÇó{an}µÄͨÏʽÓëÇ°nÏîºÍSn£»
£¨¢ò£©ÓÉÌâÒâ·Ö±ð±íʾ³öf£¨x£©µÄÖµÓòÒÔ¼°²»µÈʽµÄ½â¼¯£¬ÀûÓÃN⊆M£¬Áгö²»µÈʽ½âµÃʵÊýmµÄ×î´óÖµ£»
£¨¢ó£©ÓÉÌâÒâµÃµ½f£¨¦È£©-$\sqrt{ab}$£¾0£¬½øÒ»²½µÃµ½¹ØÓڦȵIJ»µÈʽºã³ÉÁ¢£¬ÕÒµ½µÈ¼ÛÌõ¼þ»¯¼ò£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâµÃ$f£¨x£©=\overrightarrow{OA}•\overrightarrow{OB}=acos¦Øx+bsin¦Øx$=$\sqrt{3}cos2x+sin2x$=$2sin£¨2x+\frac{¦Ð}{3}£©$£®¡£¨1·Ö£©
ÓÉ$2sin£¨2x+\frac{¦Ð}{3}£©=0⇒2x+\frac{¦Ð}{3}=k¦Ð⇒{x_k}=-\frac{¦Ð}{6}+\frac{k¦Ð}{2}£¬k¡ÊZ$£®¡£¨2·Ö£©
µ±k=1ʱ${x_1}=-\frac{¦Ð}{6}+\frac{¦Ð}{2}=\frac{¦Ð}{3}£¾0$£¬ÇÒ${x_{k+1}}-{x_k}=\frac{¦Ð}{2}$£¨³£Êý£©£¬
¡à{an}ΪÊ×ÏîÊÇ${a_1}=\frac{¦Ð}{3}$£¬¹«²îΪ$\frac{¦Ð}{2}$µÄµÈ²îÊýÁУ®
¡à${a_n}=-\frac{¦Ð}{6}+\frac{n¦Ð}{2}£¬n¡Ê{N^*}$£®¡£¨3·Ö£©
¡à${S_n}=\frac{{£¨{a_1}+{a_n}£©n}}{2}=\frac{{£¨\frac{¦Ð}{3}-\frac{¦Ð}{6}+\frac{n¦Ð}{2}£©n}}{2}=£¨\frac{¦Ð}{12}+\frac{n¦Ð}{4}£©n=\frac{¦Ð}{4}{n^2}+\frac{¦Ð}{12}n£¬n¡Ê{N^*}$£®¡£¨4·Ö£©
£¨¢ò£© ÓÉg£¨a£©=g£¨b£©+g£¨-2£©µÃ2a=2b¡Á2-2⇒2a=2b-2⇒b=a+2£®¡£¨5·Ö£©
¡ß$f£¨x£©=acos¦Øx+bsin¦Øx=\sqrt{{{£¨a+2£©}^2}+{a^2}}sin£¨¦Øx+¦Õ£©$£¬
¡àf£¨x£©µÄÖµÓòΪ$M=[{-\sqrt{{{£¨a+2£©}^2}+{a^2}}£¬\sqrt{{{£¨a+2£©}^2}+{a^2}}}]$£®¡£¨6·Ö£©
¡ßx2+mx=0µÄ½âΪ0»ò-m£¬¡àN=[-m£¬0]»òN=[0£¬-m]£®
¡àҪʹµÃN⊆M£¬Ðë$-m¡Ê[{-\sqrt{{{£¨a+2£©}^2}+{a^2}}£¬\sqrt{{{£¨a+2£©}^2}+{a^2}}}]$£®¡£¨7·Ö£©
¡ß$\sqrt{{{£¨a+2£©}^2}+{a^2}}=\sqrt{2{{£¨a+1£©}^2}+2}¡Ý\sqrt{2}$£¬¡à$M=[{-\sqrt{2}£¬\sqrt{2}}]$£®
¡à$-\sqrt{2}¡Ü-m¡Ü\sqrt{2}$£¬¼´$-\sqrt{2}¡Üm¡Ü\sqrt{2}$£®
¡àʵÊýmµÄ×î´óֵΪ$\sqrt{2}$£®¡£¨8·Ö£©
£¨¢ó£©ÓÉÌâµÃ$f£¨¦È£©-\sqrt{ab}$=t2cos¦È+£¨1-t£©2sin¦È-t£¨1-t£©=£¨1+sin¦È+cos¦È£©t2-£¨2sin¦È+1£©t+sin¦È
¡àÌâÒâµÈ¼ÛÓÚ£¨1+sin¦È+cos¦È£©t2-£¨2sin¦È+1£©t+sin¦È£¾0¶ÔÈÎÒâµÄt¡Ê[0£¬1]ºã³ÉÁ¢£®
Áît=0£¬t=1£¬µÃsin¦È£¾0£¬cos¦È£¾0£®¡£¨9·Ö£©
¡ß1+2sin¦È£¼2+2sin¦È+2cos¦È£¬
¡à¶Ô³ÆÖá$t=\frac{1+2sin¦È}{2+2sin¦È+2cos¦È}£¼1$ºã³ÉÁ¢£®
¡à¶Ô³ÆÖáÂäÔÚÇø¼ä£¨0£¬1£©ÄÚ£®¡£¨10·Ö£©
¡àÌâÒâµÈ¼ÛÓÚ$\left\{\begin{array}{l}sin¦È£¾0\\ cos¦È£¾0\\¡÷={£¨2sin¦È+1£©^2}-4£¨1+sin¦È+cos¦È£©sin¦È£¼0\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}sin¦È£¾0\\ cos¦È£¾0\\ sin2¦È£¾\frac{1}{2}\end{array}\right.$£®¡£¨11·Ö£©
$⇒\left\{\begin{array}{l}2{k_1}¦Ð£¼¦È£¼¦Ð+2{k_1}¦Ð£¬{k_1}¡Êz\\-\frac{¦Ð}{2}+2{k_2}¦Ð£¼¦È£¼\frac{¦Ð}{2}+2{k_2}¦Ð£¬{k_2}¡Êz\\ \frac{¦Ð}{12}+{k_3}¦Ð£¼¦È£¼\frac{5¦Ð}{12}+{k_3}¦Ð£¬{k_3}¡Êz\end{array}\right.$$⇒\frac{¦Ð}{12}+2{k_3}¦Ð£¼¦È£¼\frac{5¦Ð}{12}+2{k_3}¦Ð£¬{k_3}¡Êz$£®
¡à¦ÈµÄÈ¡Öµ·¶Î§ÊÇ$[{\frac{¦Ð}{12}+2k¦Ð£¬\frac{5¦Ð}{12}+2k¦Ð}]£¬k¡Êz$£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÁËƽÃæÏòÁ¿ÊýÁ¿»ýµÄÔËËãµÈ²îÊýÁеÄͨÏǰnÏîºÍµÄÇó·¨ÒÔ¼°¹ØÓÚÈý½Çº¯ÊýµÄ²»µÈʽºã³ÉÁ¢ÎÊÌ⣻ÊôÓÚÄÑÌ⣮
A£® | 1Ìõ | B£® | 2Ìõ | C£® | 3Ìõ | D£® | 4Ìõ |
A£® | -$\frac{4}{5}$ | B£® | $\frac{4}{5}$ | C£® | -$\frac{3}{5}$ | D£® | $\frac{3}{5}$ |
A£® | 101011£¨2£© | B£® | 1210£¨3£© | C£® | 110£¨8£© | D£® | 68£¨12£© |