题目内容

设a,b∈R,且a≠b,a+b=2,则下列不等式成立的是(  )
分析:由于a+b=2,a≠b,可得ab<(
a+b
2
)2
=1;由于(a-b)2>0,可得
a2+b2
2
>ab
;由于2(a2+b2)>(a+b)2=4,可得
a2+b2
2
>1
,即可判断出.
解答:解:∵a+b=2,a≠b,∴ab<(
a+b
2
)2
=1;
∵(a-b)2>0,∴
a2+b2
2
>ab

∵2(a2+b2)>(a+b)2=4,
a2+b2
2
>1

综上可知:
a2+b2
2
>1>ab

故选B.
点评:本题综合考查了实数的性质和重要不等式、基本不等式的性质等基础知识与基本技能方法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网