题目内容
15.解方程组:$\left\{\begin{array}{l}{3{x}^{2}-{y}^{2}=8}\\{{x}^{2}+xy+{y}^{2}=4}\end{array}\right.$.分析 利用消元法解方程组即可.
解答 解:由x2+xy+y2=4得2x2+2xy+2y2=8,
和3x2-y2=8,进行相减得3y2+2xy-x2=0
即(y+x)(3y-x)=0,
则x=3y或x=-y,
若x=3y,代入3x2-y2=8得26y2=8,即y2=$\frac{8}{26}=\frac{4}{13}$,则y=$±\sqrt{\frac{4}{13}}$=±$\frac{2\sqrt{13}}{13}$,此时x=$±\frac{6\sqrt{13}}{13}$.
若x=-y,代入3x2-y2=8得2y2=8,即y2=4,则y=2或-2,此时x=-2或2.
即方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=-2}\end{array}\right.$或$\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{6\sqrt{13}}{13}}\\{y=\frac{2\sqrt{13}}{13}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{6\sqrt{13}}{13}}\\{y=-\frac{2\sqrt{13}}{13}}\end{array}\right.$.
点评 本题主要考查二元二次方程组的求解,利用消元法是解决本题的关键.
练习册系列答案
相关题目
10.已知等差数列{an}的前n项和为sn,且S2=10,S5=55,则过点P(n,an),Q(n+2,an+2)(n∈N*)的直线的斜率为( )
A. | 4 | B. | $\frac{1}{4}$ | C. | -4 | D. | -$\frac{1}{4}$ |
20.下列各式中,值为$\frac{1}{2}$的是( )
A. | cos2$\frac{π}{12}$-sin2$\frac{π}{12}$ | B. | $\sqrt{\frac{{1+cos\frac{π}{6}}}{2}}$ | ||
C. | sin15°cos15° | D. | $\frac{tan22.5°}{1-ta{n}^{2}22.5°}$ |