题目内容
△ABC中,内角A、B、C的对边分别为a、b、c,已知a、b、c成等比数列,且cosB=| 3 |
| 4 |
(1)求cotA+cotC的值;
(2)若
| BA |
| BC |
| 3 |
| 2 |
分析:(1)首先求出sinB的值,再依据正弦定理及a、b、c成等比数列得出sin2B=sinAsinC,对cotA+cotC化简代入即可.
(2)通过
•
=
求出cosB的值,进而求出b2的值.再利用余弦定理求出答案.
(2)通过
| BA |
| BC |
| 3 |
| 2 |
解答:解:(1)∵cosB=
∴sinB=
=
=
∵a、b、c成等比数列
∴b2=ac
∴依据正弦定理得:sin2B=sinAsinC
∴cotA+cotC
=
+
=
=
=
=
=
.
(2)∵
•
=
,
∴ac•cosB=
,
∵cosB=
,
∴ac=2,即:b2=2.
∵b2=a2+c2-2ac•cosB
∴a2+c2=b2+2ac•cosB=5
∴(a+c)2=a2+c2+2ac=5+4=9
故:a+c=3.
| 3 |
| 4 |
∴sinB=
| 1-cos2B |
1-
|
| ||
| 4 |
∵a、b、c成等比数列
∴b2=ac
∴依据正弦定理得:sin2B=sinAsinC
∴cotA+cotC
=
| cosA |
| sinA |
| cosC |
| sinC |
=
| sinCcosA+cosCsinA |
| sinAsinC |
=
| sin(A+C) |
| sin2B |
=
| sinB |
| sin2B |
=
| 1 |
| sinB |
=
4
| ||
| 7 |
(2)∵
| BA |
| BC |
| 3 |
| 2 |
∴ac•cosB=
| 3 |
| 2 |
∵cosB=
| 3 |
| 4 |
∴ac=2,即:b2=2.
∵b2=a2+c2-2ac•cosB
∴a2+c2=b2+2ac•cosB=5
∴(a+c)2=a2+c2+2ac=5+4=9
故:a+c=3.
点评:本题主要考查余弦定理的运用.应熟练记忆并灵活运用.
练习册系列答案
相关题目