题目内容

已知椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,椭圆C的左、右焦点分别为F1(-1,0)、F2(1,0),斜率为k(k≠0)的直线l经过点F2,交椭圆于A、B两点,且△ABF1的周长为8.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点E为x轴上一点,
AF2
F2B
(λ∈R),若
F1F2
⊥(
EA
BE
)
,求点E的坐标.
分析:(Ⅰ)由题意可得|AF1|+|BF1|+|AB|=8,结合|AB|=AF2|+|BF2|,可求|AF1|+|BF1|+|AF2|+|BF2|,根据椭圆的定义可求a,然后由c得值班可求b,进而可求椭圆的方程
(Ⅱ)设点E的(m,0),由已知可得直线l的方程为y=k(x-1),代入椭圆方程
x2
4
+
y2
3
=1整理得:(3+4k2)x2-8k2x+4k2-12=0,设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个实根,结合根与系数得关系及
AF2
F2B
F1F2
⊥(
EA
BE
)
,代入可求点E的坐标
解答:解:(Ⅰ)依题意,A、B不与椭圆C长轴两端点重合,因为△ABF1的周长为8,
即|AF1|+|BF1|+|AB|=8,又|AB|=AF2|+|BF2|,
所以|AF1|+|BF1|+|AF2|+|BF2|=8.
根据椭圆的定义,得|AF1|+|AF2|=2a,|BF1|+|BF2|=2a,
所以,4a=8,a=2.…(2分)
又因为 c=1,
所以,b=
3

所以椭圆C的方程为
x2
4
+
y2
3
=1.(4分)
(Ⅱ)设点E的坐标为(m,0),由已知可得直线l的方程为y=k(x-1),
代入椭圆方程
x2
4
+
y2
3
=1
消去y整理得:(3+4k2)x2-8k2x+4k2-12=0(*)(6分)
△=64k4-4(3+4k2)(4k2-12)=144(k2+1)>0
设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个实根,
由根与系数的关系可知:
x1+x2=
8k2
3+4k2
x1x2=
4k2-12
3+4k2
(1)
 
(2)
(8分)
AF2
=(1-x1,-y1
),
F2B
=(x2-1,y2
),
EA
=(x1-m,y1
),
BE
=(m-x2,-y2

由已知
AF2
F2B
,得1-x1=λ(x2-1).
由已知x2≠1,则λ=
1-x1
x2-1
(9分)
EA
BE
=(x1-m+λ(m-x2),y1y2
)x1-m+λ(m-x2)=x1-m+
(1-x1)(m-x2)
x2-1
=
(x1-m)(x2-1)+(1-x1)(m-x2)
x2-1

=
2x1x2-(m+1)(x1+x2)+2m
x2-1
=
2(4k2-12)
3+4k2
-
8(m+1)k2
3+4k2
+2m
x2-1

因为
F1F2
•(
EA
BE
)=0
F1F2
=(2,0),
EA
BE
=(x1-m+λ(m-x2),y1y2

∴2(x1-m+λ(m-x2))=0
2(4k2-12)
3+4k2
-
8(m+1)k2
3+4k2
+2m=0
化简得:6m-24=0,m=4,即E(4,0).(12分)
点评:本题主要考查了利用椭圆的定义求解椭圆的方程,直线与椭圆的相交关系的应用,方程的根与系数的关系的应用,考查了考生的基本运算推理的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网