题目内容

二次函数y=f(x)的图象过坐标原点,且其导函数的图象过二、三、四象限,则函数y=f(x)的图象不经过


  1. A.
    第一象限
  2. B.
    第二象限
  3. C.
    第三象限
  4. D.
    第四象限
A
分析:设二次函数y=f(x)=ax2+bx,利用它的导数y=f′(x)=2ax+b 图象过二、三、四象限,可得a<0,b<0,y=f(x)的图象顶点 (- )在第二象限.
解答:由题意可知可设二次函数y=f(x)=ax2+bx,它的导数y=f′(x)=2ax+b,
由导数y=f′(x)的图象是经过二、三、四象限的一条直线,
∴a<0,b<0,
y=f(x)的图象顶点 (- )在第二象限,
故选 A.
点评:本题考查求函数的导数的方法,直线在坐标系中的位置与斜率、截距的关系,二次函数的性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网