题目内容

f(x)是定义在R上的增函数,则下列结论一定正确的是(  )
分析:设F(x)=f(x)-f(-x),先根据符合函数的单调性判断函数F(x)的单调性,再直接用-x代入计算,比较F(x)与F(-x),根据奇偶性的定义作出是奇函数判断即可,从而选出正确选项.
解答:解:设F(x)=f(x)-f(-x),
∵f(x)是定义在R的增函数
∴f(-x)是定义在R的减函数,从而-f(-x)是定义在R的增函数,
∴F(x)=(x)-f(-x)在(-∞,+∞)的增函数,
∵F(x)=f(x)-f(-x)
∴F(-x)=f(-x)-f(x)
则F(x)=-F(-x)
∴函数F(x)为奇函数,且在(-∞,+∞)的增函数
故选C.
点评:本题主要考查函数奇偶性的定义以及函数单调性的判断与证明,同时考查分析问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网