题目内容

对于任意实数x,函数f(x)=(5-a)x2-6x+a+5恒为正值,求a的取值范围.
分析:将函数f(x)=(5-a)x2-6x+a+5恒为正值转化为f(x)=(5-a)x2-6x+a+5>0,利用不等式的性质解决即可.
解答:解:要使函数f(x)=(5-a)x2-6x+a+5恒为正值,
则等价为(5-a)x2-6x+a+5>0恒成立,
若5-a=0,即a=5时,不等式等价为-6x+10>0,此时不满足条件.
∴a≠5,
要使不等式(5-a)x2-6x+a+5>0恒成立,
5-a>0
△=36-4(5-a)(a+5)<0

a<5
a2-16<0

解得-4<a<4,
∴a的取值范围是-4<a<4.
点评:本题主要考查不等式恒成立问题,利用一元二次不等式的性质是解决本题的关键,注意对二次项系数进行分类讨论.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网