题目内容
【题目】如图,在四棱锥中,底面是直角梯形,,,,是正三角形,,是的中点.
(1)证明:;
(2)求直线与平面所成角的正弦值.
【答案】(1)见证明;(2)
【解析】
(1)设是的中点,连接、,先证明是平行四边形,再证明平面,即
(2)以为坐标原点,的方向为轴的正方向,建空间直角坐标系,分别计算各个点坐标,计算平面法向量,利用向量的夹角公式得到直线与平面所成角的正弦值.
(1)证明:设是的中点,连接、,
是的中点,,,
,,, ,
是平行四边形,,
,,,
,,,
由余弦定理得,
,,
,平面,,
;
(2)由(1)得平面,,平面平面,
过点作,垂足为,平面,以为坐标原点,的方向为轴的正方向,建立如图的空间直角坐标系,
则,,,
,
设是平面的一个法向量,则,,
令,则,,
,
直线与平面所成角的正弦值为.
练习册系列答案
相关题目