题目内容
【题目】若如下框图所给的程序运行结果为,那么判断框中应填入的关于的条件是( )
A. B. C. D.
【答案】D
【解析】分析:根据赋值框中对累加变量和循环变量的赋值,先判断后执行,假设满足条件,依次执行循环,到累加变量S的值为35时,再执行一次k=k+1,此时判断框中的条件不满足,由此可以得到判断框中的条件.
详解:框图首先给累加变量S赋值1,给循环变量k赋值10.
判断10>6,执行S=1+10=11,k=10﹣1=9;
判断9>6,执行S=11+9=20,k=9﹣1=8;
判断8>6,执行S=20+8=28,k=8﹣1=7;
判断7>6,执行S=28+7=35,k=6;
判断6≤6,输出S的值为35,算法结束.
所以判断框中的条件是k>6?.
故答案为:D.
【题目】市某机构为了调查该市市民对我国申办2034年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:
不支持 | 支持 | 合计 | |
男性市民 | |||
女性市民 | |||
合计 |
(1)根据已知数据把表格数据填写完整;
(2)利用(1)完成的表格数据回答下列问题:
(i)能否有的把握认为支持申办足球世界杯与性别有关;
(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退体老人中随机抽取人,求至多有位老师的概率.
参考公式:,其中.
参考数据:
【题目】东莞市公交公司为了方便广大市民出行,科学规划公交车辆的投放,计划在某个人员密集流动地段增设一个起点站,为了研究车辆发车的间隔时间与乘客等候人数之间的关系,选取一天中的六个不同的时段进行抽样调查,经过统计得到如下数据:
间隔时间(分钟) | 8 | 10 | 12 | 14 | 16 | 18 |
等候人数(人) | 16 | 19 | 23 | 26 | 29 | 33 |
调查小组先从这6组数据中选取其中的4组数据求得线性回归方程,再用剩下的2组数据进行检验,检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若两组差值的绝对值均不超过1,则称所求的回归方程是“理想回归方程”.
参考公式:用最小二乘法求线性回归方程的系数公式:,
(1)若选取的是前4组数据,求关于的线性回归方程;
(2)判断(1)中的方程是否是“理想回归方程”:
(3)为了使等候的乘客不超过38人,试用(1)中方程估计间隔时间最多可以设置为多少分钟?