题目内容
在梯形ABCD中,M、N分别是腰AB和腰CD的中点,且AD=2,BC=4,则MN=________.
3
【解析】由梯形的中位线定理直接可得MN==3.
如图所示,已知BC是⊙O的弦,P是BC延长线上一点,PA与⊙O相切于点A,∠ABC=25°,∠ACB=80°,求∠P的度数.
如图所示,四边形ABCD是矩形,∠BEF=90°,①②③④这四个三角形能相似的是__________.
如图所示,已知平面α∥平面β,点P是平面α、β外一点,且直线PB分别与α、β相交于A、B,直线PD分别与α、β相交于C、D.
(1)求证:AC∥BD;
(2)如果PA=4 cm,AB=5 cm,PC=3 cm,求PD的长.
如图,以梯形ABCD的对角线AC及腰AD为邻边作平行四边形ACED,DC的延长线交BE于点F,求证:EF=BF.
已知椭圆的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为,倾斜角为的直线过点.
(1)求该椭圆的方程;
(2)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得与关于直线对称,若存在,求出点的坐标,若不存在,说明理由.
不等式的实数解为 ____________
现有7道题,其中5道甲类题,2道乙类题,张同学从中任取2道题解答.试求:
(1)所取的两道题都是甲类题的概率;
(2)所取的两道题不是同一类题的概率.