题目内容

设x1、x2∈R,常数a>0,定义运算“⊕”:x1⊕x2=(x1+x22,定义运算“?”:x1?x2=(x1-x22;对于两点A(x1,y1)、B(x2,y2),定义d(AB)=
y1?y2

(1)若x≥0,求动点P(x,
(x⊕a)-(x?a)
) 的轨迹C;
(2)已知直线l1 : y=
1
2
x+1
与(1)中轨迹C交于A(x1,y1)、B(x2,y2)两点,若
(x1?x2)+(y1?y2)
=8
15
,试求a的值;
(3)在(2)中条件下,若直线l2不过原点且与y轴交于点S,与x轴交于点T,并且与(1)中轨迹C交于不同的两点P、Q,试求
|d(ST)|
|d(SP)|
+
|d(ST)|
|d(SQ)|
的取值范围.
分析:(1)设y=
(x⊕a)-(x?a)
,根据新定义运算得出:y2=(x⊕a)-(x?a)=(x+a)2-(x-a)2=4ax,从而得出的轨迹方程即可;
(2)先将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用根据新定义运算即可求得a值,从而解决问题;
(3)根据新定义运算得到:d(AB)=
y1?y2
=|y1-y2|
,从而
|d(ST)|
|d(SP)|
+
|d(ST)|
|d(SQ)|
=
|ST|
|SP|
+
|ST|
|SQ|

设直线l2:x=my+c,分别过P、Q作PP1⊥y轴,QQ1⊥y轴,垂足分别为P1、Q1,有
|ST|
|SP|
+
|ST|
|SQ|
=
|OT|
|PP1|
+
|OT|
|QQ1|
=
|c|
|xP|
+
|c|
|xQ|
.由
y2=8x
x=my+c
先将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用基本不等式即可求得试求
|d(ST)|
|d(SP)|
+
|d(ST)|
|d(SQ)|
的取值范围.
解答:精英家教网解:(1)设y=
(x⊕a)-(x?a)

则y2=(x⊕a)-(x?a)=(x+a)2-(x-a)2=4ax,
又由y=
(x⊕a)-(x?a)
≥0,
可得P(x,
(x⊕a)-(x?a)
) 的轨迹方程为y2=4ax(y≥0),轨迹C为顶点在原点,焦点为(a,0)的抛物线在x轴上及第一象限的内的部分;
(2)由已知可得
y2=4ax
y=
1
2
x+1
,整理得x2+(4-16a)x+4=0,
由△=(4-16a)2-16=162a2-8×16a≥0,得a≥
1
2
或a≤0

∵a>0,∴a≥
1
2

(x1?x2)+(y1?y2)
=
(x1-x2)2+(y1-y2)2
=
(x1-x2)2+(
x1-x2
2
)
2
=
5
2
(x1+x2)2-4x1x2
=
5
2
(4-16a)2-16
=8
15

解得a=2或a=-
1
2
(舍).
(3)∵d(AB)=
y1?y2
=|y1-y2|

|d(ST)|
|d(SP)|
+
|d(ST)|
|d(SQ)|
=
|ST|
|SP|
+
|ST|
|SQ|

设直线l2:x=my+c,
依题意m≠0,c≠0,则T(c,0)
分别过P、Q作PP1⊥y轴,QQ1⊥y轴,垂足分别为P1、Q1
|ST|
|SP|
+
|ST|
|SQ|
=
|OT|
|PP1|
+
|OT|
|QQ1|
=
|c|
|xP|
+
|c|
|xQ|

y2=8x
x=my+c
消去y得x2-(2c+8m2)x+c2=0.
|ST|
|SP|
+
|ST|
|SQ|
=|c|(
1
|xP|
+
1
|xQ|
)
2|c|
1
xPxQ
=2|c|
1
c2
=2

∵xP、xQ取不相等的正数,∴取等的条件不成立,
|d(ST)|
|d(SP)|
+
|d(ST)|
|d(SQ)|
的取值范围是(2,+∞).
点评:本题抽象函数、新定义函数类型的概念,不等式的性质,放缩法的技巧,对于新定义类型问题,在解答时要先充分理解定义才能答题,避免盲目下笔,遇到困难才来重头读题,费时费力,另外要在充分抓住定义的基础上,对式子的处理要灵活,各个式子的内在联系要充分挖掘出来,可现有结论向上追溯,看看需要哪些条件才能得出结果,再来寻求转化取得这些条件.属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网