题目内容
14.已知等差数列{an}的各项均为正数,a1=1,且a3,a4+5252,a11成等比数列.分析 (Ⅰ)由题意知(a4+52a4+52)2=a3a11,从而可得公差d=32d=32,所以an=3n−12an=3n−12;
(Ⅱ)将bn=4(3n−1)(3n+2)列项为43(13n−1−13n+2),求和即得Tn的值.
解答 解:(Ⅰ)设等差数列公差为d,由题意知d>0,
∵a3,a4+52,a11成等比数列,
∴(a4+52)2=a3a11,
∴(72+3d)2=(1+2d)(1+10d),即44d2-36d-45=0,
解得d=32或d=−1522(舍去),
所以an=3n−12;
(Ⅱ)因为bn=1anan+1=4(3n−1)(3n+2)=43(13n−1−13n+2),
所以数列{bn}的前n项和Tn=43(12−15+15−18+…+13n−1−13n+2)=2n3n+2.
点评 本题考查数列的通项公式及求前n项和,解题时要认真审题,仔细解答,采用裂项相消法是解题的关键,属中档题.
x(℃) | 300 | 400 | 500 | 600 | 700 | 800 |
y(%) | 40 | 50 | 55 | 60 | 67 | 70 |
A. | √3 | B. | √5 | C. | √3或√62 | D. | √3或√5 |
A. | π6 | B. | π4 | C. | π3 | D. | 2π3 |