ÌâÄ¿ÄÚÈÝ
12£®Æ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=\frac{2\sqrt{3}}{3}+t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®£¨1£©ÇóÖ±ÏßlÓëÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨2£©Ö±ÏßlÓëÔ²C½»ÓÚA¡¢BÁ½µã£¬Çó¹ÐÎAOBµÄÃæ»ý£®
·ÖÎö £¨1£©ÓÉÈýÖÖ·½³ÌµÄ¹ØϵÒ׵ã»
£¨2£©¿ÉµÃA£¨2£¬0£©¡¢B£¨-1£¬$\sqrt{3}$£©¡ÏAOB=150¡ã£¬ÓÉÉÈÐκÍÈý½ÇÐεÄÃæ»ýÒ׵ùÐÎÃæ»ý£®
½â´ð ½â£º£¨1£©¡ßÖ±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=\frac{2\sqrt{3}}{3}+t}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{¦Ñcos¦È=-\sqrt{3}t}\\{¦Ñsin¦È=\frac{2\sqrt{3}}{3}+t}\end{array}\right.$£¬ÏûÈ¥t¿ÉµÃ$\sqrt{3}$¦Ñsin¦È+¦Ñcos¦È=2£»
¡ßÔ²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=2sin¦È}\end{array}\right.$£¬
¡àÔ²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£»
£¨2£©ÓÉÌâÒâÒ×µÃÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪy=-$\frac{\sqrt{3}}{3}$£¨x-2£©£¬
Ô²CµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=4£¬ÁªÁ¢·½³Ì¿É½âµÃÖ±ÏßlÓëÔ²C½»ÓÚA£¨2£¬0£©¡¢B£¨-1£¬$\sqrt{3}$£©Á½µã£¬
¡àÒ׵áÏAOB=150¡ã£¬¡à¹ÐÎAOBµÄÃæ»ýS=$\frac{150}{360}$¡Á4¦Ð-$\frac{1}{2}¡Á2¡Á2¡Á$sin150¡ã=$\frac{5¦Ð}{3}$-1
µãÆÀ ±¾Ì⿼²é²ÎÊý·½³ÌºÍÆÕͨ·½³ÌÒÔ¼°¼«×ø±ê·½³Ì£¬Éæ¼°Èý½ÇÐκ͹ÐεÄÃæ»ý£¬Êô»ù´¡Ì⣮
A£® | $\frac{1}{2}$ | B£® | $\frac{4}{7}$ | C£® | $\frac{5}{7}$ | D£® | $\frac{\sqrt{2}}{2}$ |
A£® | a£¼$\frac{1}{2}$b | B£® | a£¾$\frac{1}{2}$b | C£® | a£¼$\frac{\sqrt{3}}{2}$b | D£® | a£¾$\frac{\sqrt{3}}{2}$b |