题目内容
本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。
(1)(本小题满分7分)选修4-2:矩阵与变换
设矩阵(其中a>0,b>0).
(I)若a=2,b=3,求矩阵M的逆矩阵M-1;
(II)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C’:,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
.
(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;
(II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式的解集为M.
(I)求集合M;
(II)若a,b∈M,试比较ab+1与a+b的大小.
(1)选修4—2:矩阵与变换
本小题主要考查矩阵与交换等基础知识,考查运算求解能力,考查化归与转化思想,满分7分。
解:(I)设矩阵M的逆矩阵,则
又,所以,
所以
故所求的逆矩阵
(II)设曲线C上任意一点,
它在矩阵M所对应的线性变换作用下得到点,
则
又点在曲线上,
所以,,
则为曲线C的方程,
又已知曲线C的方程为
又
(2)选修4—4:坐标系与参数方程
本小题主要考查极坐标与直角坐标的互化、椭圆的参数方程等基础知识,考查运算求解能力,考查化归与转化思想。满分7分。
解:(I)把极坐标系下的点化为直角坐标,得P(0,4)。
因为点P的直角坐标(0,4)满足直线的方程,
所以点P在直线上,
(II)因为点Q在曲线C上,故可设点Q的坐标为,
从而点Q到直线的距离为
,
由此得,当时,d取得最小值,且最小值为
(3)选修4—5:不等式选讲
本小题主要考查绝对值不等式等基础知识,考查运算求解能力,考查化归与转化思想,满分7分。
解:(I)由
所以
(II)由(I)和,
所以
故