题目内容

已知递增的等比数列{an}的前三项之积为512,且这三项分别依次减去1、3、9后又成等差数列.
(1)求数列{an}的通项公式;
(2)若Tn=
1
a1
+
2
a2
+
3
a3
+…+
n
an
,求Tn
分析:(1)分别设出递增等比数列的前3项,由题意结合等比数列的性质求解前两项,则公比可求,代入等比数列的通项公式得答案;
(2)把an代入Tn=
1
a1
+
2
a2
+
3
a3
+…+
n
an
,利用错位相减法求Tn
解答:(1)解:设递增的等比数列{an}的前三项分别为a1,a2,a3
则a1a2a3=512,∴a2=8.
又这三项分别依次减去1、3、9后又成等差数列,
则2(a2-3)=a1-1+a3-9,即a1+a3=20.
又∵a1a3=a22=64,且a1<a3,∴a1=4,a3=16,
∴等比数列{an}的公比q=2.
an=a1qn-1=4•2n-1=2n+1
(2)证明:令bn=
n
an
=
n
2n+1
=n(
1
2
)n+1

则Tn=b1+b2+…+bn
=1•(
1
2
)2+2•(
1
2
)3+…+(n-1)•(
1
2
)n+n•(
1
2
)n+1
,①
1
2
Tn=(
1
2
)3+2•(
1
2
)4+…+(n-1)•(
1
2
)n+1+n•(
1
2
)n+2
,②
①-②得:
1
2
Tn=(
1
2
)2+(
1
2
)3+…+(
1
2
)n+1-n•(
1
2
)n+2

Tn=
1
2
+(
1
2
)2+…+(
1
2
)n-n•(
1
2
)n+1

Tn=
1
2
(1-(
1
2
)n)
1-
1
2
-n•(
1
2
)n+1=1-(1+
n
2
)•(
1
2
)n
点评:本题考查了等差数列的通项公式,考查了等比数列的通项公式,训练了错位相减法求数列的和,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网