题目内容

已知递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log2an+1,Sn是数列{bn}的前n项和,求使Sn>42+4n成立的n的最小值.
分析:(Ⅰ)设等比数列{an}的公比为q,依题意有2(a3+2)=a2+a4,又a2+a3+a4=28,故a3=8.a2+a4=20.由此能够推导出an=2n
(Ⅱ)bn=log22n+1=n+1,Sn=
n2+3n
2
.故由题意可得
n2+3n
2
>42+4n
,由此能求出满足条件的n的最小值.
解答:解:(Ⅰ)设等比数列{an}的公比为q,依题意有2(a3+2)=a2+a4,(1)
又a2+a3+a4=28,将(1)代入得a3=8.
所以a2+a4=20.
于是有
a1q+a1q3=20
a1q2=8
(3分)
解得
a1=2
q=2
a1=32
q=
1
2
(6分)
又{an}是递增的,故a1=2,q=2.(7分)
所以an=2n.(8分)
(Ⅱ)bn=log22n+1=n+1,Sn=
n2+3n
2
.(10分)
故由题意可得
n2+3n
2
>42+4n

解得n>12或n<-7.又n∈N*.(12分)
所以满足条件的n的最小值为13.(13分)
点评:本题考查数列的性质和综合运用,解题时要认真审题,注意挖掘题设中的隐含条件,灵活地运用公式解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网