题目内容

(2011•江苏模拟)设函数f(x)=lg
m-1
i=1
ix+mxa
m2
,其中a∈R,m是给定的正整数,且m≥2,如果不等式f(x)<(x-2)lgm在区间[1,+∞)上恒成立,则实数a的取值范围是
a<
3-m
2
a<
3-m
2
分析:依据题意利用函数解析式,结合题设不等式求得1-a>(
1
m
x+(
2
m
x+…+(
m-1
m
x,记为g(x).根据m的范围,判断出g(x)在[1,+∞)上单调递减,进而求得函数g(x)的最大值,利用g(x)max<1-a求得a范围即可.
解答:解:f(x)=lg
1+2x+3x+…+(m-1)x+mx•a
m2
<(x-2)lgm=lgmx-2
1+2x+3x+…+(m-1)x+mx•a
m2
<mx-2
∴1-a>(
1
m
x+(
2
m
x+…+(
m-1
m
x=g(x).
1
m
2
m
,…,
m-1
m
∈(0,1),
∴g(x)在[1,+∞)上单调递减.
∴g(x)max=f(1)=
1
m
+
2
m
+…+
m-1
m
=
m-1
2

由题意知,1-a>
m-1
2

∴a<
3-m
2

故答案为:a<
3-m
2
点评:本题给出对数型函数,求一个不等式在区间上恒成立的参数a的取值范围,着重考查了指数函数和对数函数的单调性,考查了学生对基本初等函数的掌握,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网