题目内容
8.已知函数f(x)=x2-2ax+5(a>1),若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求a的取值范围.分析 由条件利用二次函数的性质可得a≥2.故只要f(1)-f(a)≤4 即可,即 (a-1)2≤4,求得a的范围.
解答 解:由于函数f(x)=x2-2ax+5的图象的对称轴为x=a,函数f(x)=x2-2ax+5在区间(-∞,2]上单调递减,∴a≥2.
故在区间∈[1,a+1]上,1离对称轴x=a最远,故要使对任意的x1,x2∈[1,a+1],都有|f(x1)-f(x2)|≤4,
只要f(1)-f(a)≤4 即可,即 (a-1)2≤4,求得-1≤a≤3.
再结合 a≥2,可得2≤a≤3,
故a的取值范围为:[2,3].
点评 本题主要二次函数的性质,绝对值不等式的解法,体现了转化的数学思想,属于基础题.
练习册系列答案
相关题目
18.下列函数中,在区间(0,+∞)上是增函数的是( )
A. | f(x)=$\frac{2}{x}$ | B. | f(x)=log2x | C. | f(x)=($\frac{1}{2}$)x | D. | f(x)=-x2+2 |
3.已知函数y=f(x),x∈R,f(0)≠0,且满足f(x1)+f(x2)=2f($\frac{{x}_{1}+{x}_{2}}{2}$)f($\frac{{x}_{1}-{x}_{2}}{2}$),则函数f(x)的奇偶性为( )
A. | 是奇函数而不是偶函数 | B. | 是偶函数而不是奇函数 | ||
C. | 既是奇函数又是偶函数 | D. | 既不是奇函数也不是偶函数 |
13.对某校小学生进行心理障碍测试得到如下的2×2列联表:
将表格填写完整,试说明心理障碍与性别是否有关?附:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
有心理障碍 | 没有心理障碍 | 总计 | |
女生 | 10 | 30 | |
男生 | 70 | 80 | |
总计 | 20 | 110 |
P(X2≥x0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
x0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
20.某网站体育版足球栏目发起了“射手的连续进球与射手在场上的区域位置的关系”的调查活动,在所有参与调查的人中,持“有关系”“无关系”“不知道”态度的人数如表所示:
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从持“有关系”态度的人中抽取45人,求n的值;
(2)在持“不知道”态度的人中,用分层抽样的方法抽取10人看作一个总体:
①从这10个人中选取3人,求至少一人在40岁以下的概率;
②从这10人中选取3人,若设40岁以下的人数为X,求X的分布列和数学期望.
有关系 | 无关系 | 不知道 | |
40岁以下 | 800 | 450 | 200 |
40岁以上(含40岁) | 100 | 150 | 300 |
(2)在持“不知道”态度的人中,用分层抽样的方法抽取10人看作一个总体:
①从这10个人中选取3人,求至少一人在40岁以下的概率;
②从这10人中选取3人,若设40岁以下的人数为X,求X的分布列和数学期望.