题目内容

函数y=lg[-cos(2x+
π
4
)]
的单调递增区间是(  )
A.[kπ+
3
8
π,kπ+
7
8
π)
,(k∈Z)
B.(kπ+
5
8
π,kπ+
7
8
π),(k∈Z)
C.(kπ+
1
8
π,kπ+
3
8
π],(k∈Z)
D.[kπ+
1
8
π,kπ+
3
8
π],(k∈Z)
由复合函数的单调性
要求函数y=lg[-cos(2x+
π
4
)]
的单调递增区间
即求t=cos(2x+
π
4
)
的递减区间且满足t=cos(2x+
π
4
)<0

所以令2kπ+
π
2
<2x+
π
4
<2kπ+π

解得kπ+
1
8
π<x<kπ+
3
8
π

故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网