题目内容
【题目】已知a>0且a≠1,设命题p:函数y=loga(x-1)在(1,+∞)上单调递减,命题q:曲线y=x2+(a-2)x+4与x轴交于不同的两点.若“p且q”为真命题,求实数a的取值范围.
【答案】(6,+∞).
【解析】
先根据对数函数的单调性,和二次函数图象和x轴交点的情况与判别式的关系即可求出命题p,q下的a的取值范围.根据p∧q为假,p∨q为真即可判断p,q的真假情况,根据p,q的真假情况即可求出a的取值范围.
由函数y=loga(x-1)在(1,+∞)上单调递减,知0<a<1.
若曲线y=x2+(a-2)x+4与x轴交于不同的两点,
则(a-2)2-16>0,即a<-2或a>6.
又a>0且a≠1,所以a>6.
又因为“p且q”为真命题,所以p为假命题,q为真命题,于是有所以a>6.
因此,所求实数a的取值范围是(6,+∞).
练习册系列答案
相关题目
【题目】近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨);
“厨余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 | |
厨余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(1)试估计厨余垃圾投放正确的概率;
(2)试估计生活垃圾投放错误的概率;
(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.
(求:S2= [ + +…+ ],其中 为数据x1 , x2 , …,xn的平均数)