题目内容
(10分) 设函数求证:
(1);
(2)函数在区间(0,2)内至少有一个零点;
(1);
(2)函数在区间(0,2)内至少有一个零点;
略
证明:(1)
又 ……………………2分
又2c=-3a-2b 由3a>2c>2b ∴3a>-3a-2b>2b
∵a>0 ………………………………………………4分
(2)∵f(0)=c,f(2)=4a+2b+c=a-c………………………………6分
①当c>0时,∵a>0,∴f(0)=c>0且
∴函数f(x)在区间(0,1)内至少有一个零点……………………8分
②当c≤0时,∵a>0
∴函数f(x)在区间(1,2)内至少有一个零点.
综合①②得f(x)在(0,2)内至少有一个零点…………………………10分
又 ……………………2分
又2c=-3a-2b 由3a>2c>2b ∴3a>-3a-2b>2b
∵a>0 ………………………………………………4分
(2)∵f(0)=c,f(2)=4a+2b+c=a-c………………………………6分
①当c>0时,∵a>0,∴f(0)=c>0且
∴函数f(x)在区间(0,1)内至少有一个零点……………………8分
②当c≤0时,∵a>0
∴函数f(x)在区间(1,2)内至少有一个零点.
综合①②得f(x)在(0,2)内至少有一个零点…………………………10分
练习册系列答案
相关题目