题目内容
【题目】如图所示,在斜三棱柱ABC—A1B1C1中,点D,D1分别为AC,A1C1上的点.
(1)当的值等于何值时,BC1∥平面AB1D1;
(2)若平面BC1D∥平面AB1D1,求的值.
【答案】(1)1; (2)1.
【解析】
(1)取为线段的中点,此时=1,连接交于点,连接,在中,点分别为的中点,得,进而证得面.
(2)由已知,平面平面,进而得到和,进而可求解.
(1)如图所示,取D1为线段A1C1的中点,
此时=1,连接A1B交AB1于点O,连接OD1.
由棱柱的性质,知四边形A1ABB1为平行四边形,所以点O为A1B的中点.
在△A1BC1中,点O,D1分别为A1B,A1C1的中点,∴OD1∥BC1.
又∵OD1平面AB1D1,BC1平面AB1D1,
∴BC1∥平面AB1D1.∴时,BC1∥平面AB1D1.
(2)由已知,平面BC1D∥平面AB1D1,且平面A1BC1∩平面BDC1=BC1,
平面A1BC1∩平面AB1D1=D1O,因此BC1∥D1O,同理AD1∥DC1.
∴.又∵,∴,即.
练习册系列答案
相关题目
【题目】在一段时间内,分5次测得某种商品的价格x(万元)和需求量y(t)之间的一组数据为:
1 | 2 | 3 | 4 | 5 | |
价格x | 1.4 | 1.6 | 1.8 | 2 | 2.2 |
需求量y | 12 | 10 | 7 | 5 | 3 |
已知,
(1)画出散点图;
(2)求出y对x的线性回归方程;
(3)如价格定为1.9万元,预测需求量大约是多少?(精确到0.01 t).
参考公式: .