ÌâÄ¿ÄÚÈÝ

(Àí)(1)Ö¤Ã÷£ºÈôÊýÁÐ{an}ÓеÝÍƹØϵan+1=Aan+B£¬ÆäÖÐA¡¢BΪ³£Êý£¬ÇÒA¡Ù1£¬B¡Ù0£¬ÔòÊýÁÐ{an}ÊÇÒÔAΪ¹«±ÈµÄµÈ±ÈÊýÁУ»

(2)ÈôÊýÁÐ{an}¶ÔÓÚÈÎÒâµÄn¡ÊN*¶¼ÓÐSn=2an-n£¬Áîf(x)=a1x+a2x2+¡­+anxn£¬Çóº¯Êýf(x)ÔÚx=1´¦µÄµ¼Êý£®

(ÎÄ)ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÒÑÖª¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐSn=2an-n£®

(1)ÇóÊýÁÐ{an}µÄÊ×Ïîa1¼°µÝÍƹØϵʽ£ºan+1=f(an)£»

(2)ÏÈÔĶÁÏÂÃæµÄ¶¨Àí£º¡°ÈôÊýÁÐ{an}ÓеÝÍƹØϵan+1=Aan+B£¬ÆäÖÐA¡¢BΪ³£Êý£¬ÇÒA¡Ù1£¬B¡Ù0£¬

ÔòÊýÁÐ{an}ÊÇÒÔAΪ¹«±ÈµÄµÈ±ÈÊýÁС±£®ÇëÄãÔÚ(1)µÄ»ù´¡ÉÏÓ¦Óñ¾¶¨Àí£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»

(3)ÇóÊýÁÐ{an}µÄÇ°nÏîºÍSn£®

´ð°¸£º(Àí)(1)an+1=Aan+B=Aan=A(an)

A(an)

¡à{an}ÊÇÒÔAΪ¹«±ÈµÄµÈ±ÈÊýÁУ®

(2)¡ßSn+1=2an+1-(n+1)£¬Sn=2an-n

¡àan+1=2an+1-2an-1

¼´an+1=2an+1

ÓÉ(1)Öª{an+1}Êǹ«±ÈΪ2µÄµÈ±ÈÊýÁÐ

¡àan=2n-1

¡ßf¡ä(x)=a1+2a2+3a3x2+¡­+nanxn-1

¡àf¡ä(1)=a1+2a2+3a3+¡­+nan

=(2+2¡Á22+3¡Á23+¡­+n¡Á2n)-(1+2+3+¡­+n)

=2+(n-2)2n+1

(ÎÄ)(1)¡ßa1=2a1-1£¬¡àa1=1

¡ßSn=2an-n                                                                   ¢Ù

¡àSn+1=2an+1-(n+1)                                                             ¢Ú

¢Ú-¢ÙµÃan+1=2an+1-2an-1

¡àan+1=2an+1£®

(2)¡ßan+1=2an+1

¡à{an+1}ÊǵȱÈÊýÁУ¬¹«±ÈΪ2£¬Ê×ÏîΪan+1=2

¡àan+1=2¡Á2n-1£¬¡àan=2n-1£®

(3)Sn=(2-1)+(22-1)+(23-1)+¡­+(2n-1)

=(2+22+23+¡­+2n)-n=2n+1-2-n£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø