ÌâÄ¿ÄÚÈÝ
(Àí)(1)Ö¤Ã÷£ºÈôÊýÁÐ{an}ÓеÝÍƹØϵan+1=Aan+B£¬ÆäÖÐA¡¢BΪ³£Êý£¬ÇÒA¡Ù1£¬B¡Ù0£¬ÔòÊýÁÐ{an}ÊÇÒÔAΪ¹«±ÈµÄµÈ±ÈÊýÁУ»(2)ÈôÊýÁÐ{an}¶ÔÓÚÈÎÒâµÄn¡ÊN*¶¼ÓÐSn=2an-n£¬Áîf(x)=a1x+a2x2+¡+anxn£¬Çóº¯Êýf(x)ÔÚx=1´¦µÄµ¼Êý£®
(ÎÄ)ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÒÑÖª¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐSn=2an-n£®
(1)ÇóÊýÁÐ{an}µÄÊ×Ïîa1¼°µÝÍƹØϵʽ£ºan+1=f(an)£»
(2)ÏÈÔĶÁÏÂÃæµÄ¶¨Àí£º¡°ÈôÊýÁÐ{an}ÓеÝÍƹØϵan+1=Aan+B£¬ÆäÖÐA¡¢BΪ³£Êý£¬ÇÒA¡Ù1£¬B¡Ù0£¬
ÔòÊýÁÐ{an}ÊÇÒÔAΪ¹«±ÈµÄµÈ±ÈÊýÁС±£®ÇëÄãÔÚ(1)µÄ»ù´¡ÉÏÓ¦Óñ¾¶¨Àí£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
(3)ÇóÊýÁÐ{an}µÄÇ°nÏîºÍSn£®
´ð°¸£º(Àí)(1)an+1=Aan+B=Aan=A(an)
A(an)
¡à{an}ÊÇÒÔAΪ¹«±ÈµÄµÈ±ÈÊýÁУ®
(2)¡ßSn+1=2an+1-(n+1)£¬Sn=2an-n
¡àan+1=2an+1-2an-1
¼´an+1=2an+1
ÓÉ(1)Öª{an+1}Êǹ«±ÈΪ2µÄµÈ±ÈÊýÁÐ
¡àan=2n-1
¡ßf¡ä(x)=a1+2a2+3a3x2+¡+nanxn-1
¡àf¡ä(1)=a1+2a2+3a3+¡+nan
=(2+2¡Á22+3¡Á23+¡+n¡Á2n)-(1+2+3+¡+n)
=2+(n-2)2n+1
(ÎÄ)(1)¡ßa1=2a1-1£¬¡àa1=1
¡ßSn=2an-n ¢Ù
¡àSn+1=2an+1-(n+1) ¢Ú
¢Ú-¢ÙµÃan+1=2an+1-2an-1
¡àan+1=2an+1£®
(2)¡ßan+1=2an+1
¡à{an+1}ÊǵȱÈÊýÁУ¬¹«±ÈΪ2£¬Ê×ÏîΪan+1=2
¡àan+1=2¡Á2n-1£¬¡àan=2n-1£®
(3)Sn=(2-1)+(22-1)+(23-1)+¡+(2n-1)
=(2+22+23+¡+2n)-n=2n+1-2-n£®