题目内容

已知函数f(x)=x2+(a-3)x+a2-3a(a为常数).
(1)如果对任意x∈[1,2],f(x)>a2恒成立,求实数a的取值范围;
(2)设实数p,q,r满足:p,q,r中的某一个数恰好等于a,且另两个恰为方程f(x)=0的两实根,判断①p+q+r,②p2+q2+r2,③p3+q3+r3是否为定值?若是定值请求出:若不是定值,请把不是定值的表示为函数g(a),并求g(a)的最小值;
(3)对于(2)中的g(a),设H(a)=-
16
[g(a)-27]
,数列{an}满足an+1=H(an)(n∈N*),且a1∈(0,1),试判断an+1与an的大小,并证明之.
分析:(1)由f(x)>a2,可得x2+(a-3)x-3a>0,所以(x-3)(x+a)>0对x∈[1,2]恒成立,又x-3<0恒成立,可得x+a<0对x∈[1,2]恒成立,得出a<-x,又-x∈[-2,-1],即可求出a的取值范围;
(2)由△=(a-3)2-4(a2-3a)≥0得:-1≤a≤3,不妨设a=p,则q,r恰为方程两根,由韦达定理讨论即可得出答案.
(3)由(2)得H(a)=-
1
6
(3a3-9a2)
,通过求导数的方法即可求出函数的单调区间,再根据数列的知识即可求解.
解答:解:(1)∵f(x)>a2,∴x2+(a-3)x-3a>0,
∴(x-3)(x+a)>0对x∈[1,2]恒成立,
又∵x-3<0恒成立,∴x+a<0对x∈[1,2]恒成立,
∴a<-x,又-x∈[-2,-1],
∴a<-2.
(2)由△=(a-3)2-4(a2-3a)≥0得:-1≤a≤3,
不妨设a=p,则q,r恰为方程两根,由韦达定理得:
①p+q+r=3,qr=a2-3a,
②p2+q2+r2=a2+(q+r)2-2pr=a2+(3-a)2-2(a2-3a)=9,
③p3+q3+r3=a3+(q3+r3)=a3+(q+r)[q2-qr+r2]=3a3-9a2+27.
设g(a)=3a3-9a2+27,求导得:g(a)=9a2-18a=9a(a-2),
当a∈[2,3]时,g(a)>0,g(a)递增;当a∈[0,2]时,g(a)<0,g(a)递减;
当a∈[-1,0]时,g(a)>0,g(a)递增,
∴g(a)在[-1,3]上的最小值为min{g(-1),g(2)}=min{15,15}=15.
(3)由(2)得H(a)=-
1
6
(3a3-9a2)

如果a∈(0,1),则H′(a)=3a-
3
2
a2=3a(1-
1
2
a)>0
,∴H(a)在(0,1)为递增函数,
易知H(a)∈(0,1),∴a1∈(0,1)?a2∈(0,1),an∈(0,1)?an+1∈(0,1),
又∵an+1-an=-
1
2
an3+
3
2
an2-an=-
1
2
an(an-2)(an-1)<0

∴an+1<an
点评:本题考查了函数的恒成立问题及数列的应用,难度较大,关键是掌握用导数求函数的单调区间.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网