题目内容

已知f(x)是以2为周期的偶函数,当x∈[0, 1]时,f(x)=x,那么在区间[-1,3]内关于x的方程f(x)=kx+k+1(k∈R,k≠-1)的根的个数

A.不可能有3个                         B.最少有1个,最多有4个

C.最少有1个,最多有3个                D.最少有2个,最多有4个

 

【答案】

B

【解析】

试题分析:根据题,由于f(x)是以2为周期的偶函数,当x∈[0, 1]时,f(x)=x,可知作出函数在【-1,1】的图象,那么在区间[-1,3]内关于x的方程f(x)=kx+k+1(k∈R,k≠-1)的根的个数等价于f(x)=y,与y=k(x+1)+1的交点个数,利用过定点的直线的图象可知,最少有1个,最多有4个,故选B.

考点:函数与方程

点评:主要是考查了函数与方程的运用,属于中档题。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网