题目内容
已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,那么在区间[-1,3]内,关于x的方程f(x)=kx+k+1(k∈R且k≠-1)有4个不同的根,则k的取值范围是( )
A、(-
| ||
B、(-1,0) | ||
C、(-
| ||
D、(-
|
分析:把方程f(x)=kx+k+1的根转化为函数f(x)的图象和y=kx+k+1的图象的交点在同一坐标系内画出图象由图可得结论.
解答:
解:因为关于x的方程f(x)=kx+k+1(k∈R且k≠-1)有4个不同的根,
就是函数f(x)的图象与y=kx+k+1的图象有4个不同的交点,
f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,
所以可以得到函数f(x)的图象
又因为y=kx+k+1=k(x+1)+1过定点(-1,1),
在同一坐标系内画出它们的图象如图,
由图得y=kx+k+1=k(x+1)+1在直线AB和y=1中间时符合要求,
而kAB=-
所以k的取值范围是-
<k<0
故选D.
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201105/6/5c19527f.png)
就是函数f(x)的图象与y=kx+k+1的图象有4个不同的交点,
f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,
所以可以得到函数f(x)的图象
又因为y=kx+k+1=k(x+1)+1过定点(-1,1),
在同一坐标系内画出它们的图象如图,
由图得y=kx+k+1=k(x+1)+1在直线AB和y=1中间时符合要求,
而kAB=-
1 |
3 |
1 |
3 |
故选D.
点评:本题考查根的个数的应用和数形结合思想的应用.,数形结合的应用大致分两类:一是以形解数,即借助数的精确性,深刻性来讲述形的某些属性;二是以形辅数,即借助与形的直观性,形象性来揭示数之间的某种关系,用形作为探究解题途径,获得问题结果的重要工具.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目