题目内容
2.若函数t(x)在定义域内满足t($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{t({x}_{1})+t({x}_{2})}{2}$此时我们称函数t(x)在定义域内具有性质M.(1)已知函数f(x)=x2+ax+b,求证:函数f(x)在定义域内具有性质M;
(2)若函数g(x)=3x,判断函数g(x)在定义域内是否具有性质M,并说明理由;
(3)设函数h(x)=loga[(2a-1)x+1],在定义域内具有性质M,指出a的取值范围.
分析 (1)直接利用性质化简求解,验证即可.
(2)根据函数的性质,结合指数函数的图象和性质,基本不等式,可得结论.
(3)通过复合函数的单调性,结合已知条件,说明a的范围即可.
解答 证明:(1)函数f(x)=x2+ax+b,任取两个实数x1,x2(x1≠x2),
f($\frac{{x}_{1}+{x}_{2}}{2}$)=($\frac{{x}_{1}+{x}_{2}}{2}$)2+a$•\frac{{x}_{1}+{x}_{2}}{2}$+b=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}+2{{x}_{1}{x}_{2}}^{\;}}{4}+\frac{{a(x}_{1}+{x}_{2})}{2}+b$.
$\frac{f({x}_{1})+f({x}_{2})}{2}$=$\frac{1}{2}$(x12+ax1+b+x22+ax2+b)=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}+a({{x}_{1}}^{\;}+{{x}_{2}}^{\;})}{2}+b$.
∵$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}+2{{x}_{1}{x}_{2}}^{\;}}{4}≤\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{2}$,
∴f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{f({x}_{1})+f({x}_{2})}{2}$恒成立
(2)解:若f(x)=3x
则任取两个实数x1,x2(x1≠x2),
f($\frac{{x}_{1}+{x}_{2}}{2}$)=${3}^{\frac{{x}_{1}+{x}_{2}}{2}}$=$\sqrt{{3}^{{x}_{1}+{x}_{2}}}$=$\sqrt{{3}^{{x}_{1}}•{3}^{{x}_{2}}}$,
$\frac{f({x}_{1})+f({x}_{2})}{2}$=$\frac{{3}^{{x}_{1}}+{3}^{{x}_{2}}}{2}$,
由函数f(x)的值域为(0,+∞),可得:${3}^{{x}_{1}}>0,{3}^{{x}_{2}}>0$,
由基本不等式可得$\sqrt{{3}^{{x}_{1}}•{3}^{{x}_{2}}}<\frac{{3}^{{x}_{1}}+{3}^{{x}_{2}}}{2}$,即f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{f({x}_{1})+f({x}_{2})}{2}$恒成立,
函数g(x)在定义域内是否具有性质M;
(3)函数t(x)在定义域内满足t($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{t({x}_{1})+t({x}_{2})}{2}$,称函数t(x)在定义域内具有性质M,
函数h(x)=loga[(2a-1)x+1],在定义域内具有性质M,
可知:$\left\{\begin{array}{l}0<a<1\\ 2a-1>0\end{array}\right.$,所以$\frac{1}{2}<a<1$.
a的取值范围:($\frac{1}{2},1$).
点评 本题考查的知识点是指数函数的图象和性质,实际考查函数的凸凹性,属于中档题.
A. | ( $\frac{1}{3}$,$\frac{2}{3}$ ) | B. | [$\frac{1}{3}$,$\frac{2}{3}$ ) | C. | ( $\frac{1}{2}$,$\frac{2}{3}$ ) | D. | [$\frac{1}{2}$,1 ) |
A. | f(x)=$\frac{x}{2}$ | B. | f(x)=x+$\frac{1}{2}$ | C. | f(x)=2-x | D. | f(x)=log${\;}_{\frac{1}{2}}$x |