题目内容
已知方程x2+y2-2x-4y+m=0.
(1)若此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;
(3)在(2)的条件下,求以MN为直径的圆的方程.
(1)若此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;
(3)在(2)的条件下,求以MN为直径的圆的方程.
分析:(1)圆的方程化为标准方程,利用半径大于0,可得m的取值范围;
(2)直线方程与圆方程联立,利用韦达定理及OM⊥ON,建立方程,可求m的值;
(3)写出以MN为直径的圆的方程,代入条件可得结论.
(2)直线方程与圆方程联立,利用韦达定理及OM⊥ON,建立方程,可求m的值;
(3)写出以MN为直径的圆的方程,代入条件可得结论.
解答:解:(1)(x-1)2+(y-2)2=5-m,∴方程表示圆时,m<5;
(2)设M(x1,y1),N(x2,y2),则x1=4-2y1,x2=4-2y2,得x1x2=16-8(y1+y2)+4y1y2,
∵OM⊥ON,∴x1x2+y1y=0,∴16-8(y1+y2)+5y1y2=0①,
由
,得5y2-16y+m+8=0,
∴y1+y2=
,y1y2=
.
代入①得m=
.
(3)以MN为直径的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0,
即x2+y2-(x1+x2)x-(y1+y2)y=0,
∴所求圆的方程为x2+y2-
x-
y=0.
(2)设M(x1,y1),N(x2,y2),则x1=4-2y1,x2=4-2y2,得x1x2=16-8(y1+y2)+4y1y2,
∵OM⊥ON,∴x1x2+y1y=0,∴16-8(y1+y2)+5y1y2=0①,
由
|
∴y1+y2=
16 |
5 |
8+m |
5 |
代入①得m=
8 |
5 |
(3)以MN为直径的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0,
即x2+y2-(x1+x2)x-(y1+y2)y=0,
∴所求圆的方程为x2+y2-
8 |
5 |
16 |
5 |
点评:本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目