题目内容

(14分)设集合W由满足下列两个条件的数列构成:

②存在实数M,使(n为正整数)
(I)在只有5项的有限数列
;试判断数列是否为集合W的元素;
(II)设是各项为正的等比数列,是其前n项和,证明数列;并写出M的取值范围;
(III)设数列且对满足条件的M的最小值M0,都有.
求证:数列单调递增.

(I)不是集合W中的元素,是集合W中的元素.(II),且(III)见解析

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网