题目内容
函数f(x)=
-
的极值点为( )
x4 |
4 |
x3 |
3 |
A.0 | B.-1 | C.0或1 | D.1 |
由于f′(x)=x3-x2
则f′(x)=0,解得x=0或1.
又由于x<0时,f′(x)<0,f(x)为减函数.
0<x<1时,f′(x)<0,f(x)为减函数.
x>1时,f′(x)>0,f(x)为增函数.
故1是函数的极值点.
故选:D.
则f′(x)=0,解得x=0或1.
又由于x<0时,f′(x)<0,f(x)为减函数.
0<x<1时,f′(x)<0,f(x)为减函数.
x>1时,f′(x)>0,f(x)为增函数.
故1是函数的极值点.
故选:D.
练习册系列答案
相关题目