题目内容

已知函数f(x)=ax3+bx2+cx(a≠0)的定义域为R,它的图象关于原点对称,且当x=-1时,函数取极值1.
(1)求a,b,c的值;
(2)求证:曲线y=f(x)上不存在两个不同的点A、B,使过A、B两点的切线都垂直于直线AB.
分析:(1)通过图象关于原点对称求出b的值,再根据当x=-1时,函数取极值1,建立两个方程组,解之即可;
(2)由过A、B两点的切线都垂直于直线AB可知两切线平行,根据切线与AB垂直建立等量关系,验证判别式是否大于零即可.
解答:解:(1)由已知,f(-x)=-f(x),即bx2=0恒成立,
故b=0.所以f(x)=ax3+cx,f′(x)=3ax2+c.
f(-1)=0
f(-1)=1
3a+c=0
-a-c=1

解得a=
1
2
,c=-
3
2

(2)设A(x1,y1),B(x2,y2)(x1≠x2),
f(x)=
3
2
x2-
3
2
,过A、B两点的切线平行,故f′(x1)=f′(x2),
得:x12=x22.由于x1≠x2,所以x1=-x2
于是y1=-y2kAB=
y2-y1
x2-x1
=
y1
x1
=
1
2
x12-
3
2
.因为过A点的切线垂直于直线AB,
所以(
3
2
x12-
3
2
)(
1
2
x12-
3
2
)=-1?3x14-12x12+13=0
,△=-12<0,方程无解.
因此,不存在两个不同的点A、B,使过A、B的切线都垂直于直线AB.
点评:本题主要考查了利用导数研究函数的极值,考查利用数学知识分析问题、解决问题的能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网