题目内容

【题目】设函数f(x)=2sin(2x+ ),将f(x)图象上每个点的横坐标缩短为原来的一半之后成为函数y=g(x),则g(x)的图象的一条对称轴方程为(
A.x=
B.x=
C.x=
D.x=

【答案】D
【解析】解:函数f(x)=2sin(2x+ ),
将f(x)图象上每个点的横坐标缩短为原来的一半之后成为
函数y=g(x)=2sin(4x+ ).
令4x+ =kπ+ ,k∈Z,可解得函数对称轴方程为:x= kπ+ ,k∈Z,
当k=0时,x= 是函数的一条对称轴.
故选:D.
由条件根据函数y=Asin(ωx+φ)的图象变换规律可得得函数图象对应的函数解析式为y=g(x)=2sin(4x+ ),再利用正弦函数的图象的对称性求得所得函数图象的一条对称轴方程.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网