题目内容

(2012•淮南二模)在△ABC中,角A,B,C所对的边分别为a,b,c,且acosC,bcosB,c cosA成等差数列.
(I)求角B的大小;
(Ⅱ)若b=
3
,试求△ABC面积S的最大值.
分析:(I)由题意可得2bcosB=acosC+c•cosA,由正弦定理可得 2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,解得cosB=
1
2
,从而求出角B.
(Ⅱ)由余弦定理可得3=a2+c2-ac,再由 a2+c2≥2ac,可得 3≥ac,故有ABC面积S=
1
2
ac•sinB
3
2
×
3
2
,由此得到S的最大值.
解答:解:(I)由题意可得,在△ABC中,2bcosB=acosC+c•cosA,由正弦定理可得 2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,
∴cosB=
1
2
,∴角B=
π
3

∵(Ⅱ)若b=
3
,∵B=
π
3
,由余弦定理可得 b2=a2+c2-2ac•cosB,即 3=a2+c2-ac.
再由  a2+c2≥2ac,可得 3≥ac,∴△ABC面积S=
1
2
ac•sinB
3
2
×
3
2
=
3
3
4

故△ABC面积S的最大值为
3
3
4
点评:本题主要考查等差数列的定义和性质,利用正弦定理和余弦定理解三角形,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网